Monet And Its Geographic Extensions:

a Novel Approach to High Performance GIS Processing *

Peter A. Boncz, Wilko Quak, Martin L. Kersten
University of Amsterdam, CWI
{boncz,quak,mk}@fwi.uva.nl

Abstract

We describe Monet, a novel database system, de-
signed to get mazimum performance out of today’s
workstations and symmetric multiprocessors.

Monet is a type- and algebra-extensible database
system using the Decomposed Storage Model (DSM)
and employing shared memory parallelism. It ap-
plies purely main-memory algorithms for processing
and uses OS virtual memory primitives for handling
large data. Monet provides many options in memory
management and virtual-memory clustering strategies
to optimize access to its tables.

We discuss how these unusual features impacted the
design, implementation and performance of a set of
GIS extension modules, that can be loaded at runtime
in Monet, to obtain a functional complete GIS server.

The validity of our approach is shown by excellent
performance figures on both the Regional and National
Sequoia storage benchmark.

1 Introduction

In recent years, consensus has been reached in the
GIS community about the advantages of extensible
database systems. In these systems, all data — the-
matic, geometric, and raster — is captured by a single
datamodel. Queries containing both thematic and ge-
ometric primitives can be formulated in one language,
and be optimized globally. Object-relational systems
that extend their data- and query-model with GIS
types and primitives are currently available [19, 5].

Storage and querying of geographic data in an
extensible database system still poses severe per-
formance challenges to current database technology.
Data stored in a GIS is typically complex of nature

*Parts of this work were supported by SION grant no.
612-23-431

(long polygons with topological inter-relationships)
and large of size (raster data, sometimes even arriving
in a continuous stream from satellites observing the
earth).

The large datavolumes involved require the DBMS
to use very efficient resource management strategies.
Important aspects are I/O, multi-level cache perfor-
mance, memory management and multiprocessor us-
age. Geographic query optimization requires an effi-
cient use of spatial access paths and approximation
steps [3], and a way to extend the query optimizer
with geometric knowledge [10].

In this article we present Monet [2], a novel
database server, intended to serve as backend in vari-
ous application domains. It has already achieved con-
siderable successes in Data Mining [12] and for sup-
porting O-O traversals?.

We discuss how Monet’s architectural features pro-
vide opportunities for algebraic optimization and par-
allelization of queries, and how we extended Monet
with geographical primitives. The performance ef-
fectiveness and scalability of our approach is demon-
strated by excellent results obtained on respectively
the Regional and National Sequoia Benchmark.

Our work on Monet forms the lower layer of the
MAGNUM project — underway since 1994 — that aims
at building a high performance parallel GIS database
system with ODMG compliant O-O technology, em-
ploying a spatial reasoning system for query optimiza-
tion, and a state-of-the-art user interface.

!For more details and actual information on Monet, see
http://wuw.cwi.nl/cwi/projects/monet.html

2 Architecture of Monet

Monet is a novel database kernel under develop-
ment at the CWI and UvA since 1994. Its develop-
ment is based on both our experience gained in build-
ing PRISMA [1], a full-fledged parallel main-memory
RDBMS running on a 100-node multi-processor, and
on current market trends in database server technol-
ogy.

Developments in personal workstation hardware are
at a high and continuing pace. Main memories of 128
MB are now affordable and custom CPUs currently
can perform over 50 MIPS. They rely more and more
on efficient use of registers and cache, to tackle the
ever-increasing disparity? between processor power
and main memory bus speed. These hardware trends
pose new rules to computer software — and to database
systems — as to what algorithms are efficient. Another
trend has been the evolution of operating system func-
tionality towards micro-kernels, i.e. those that make
part of the Operating System functionality accessible
to customized applications. Prominent research pro-
totypes are Mach, Chorus and Amoeba, but also com-
mercial systems like Silicon Graphics’ Irix and Sun’s
Solaris increasingly provide hooks for better memory
and process management.

Given this background, we applied the following ideas
in the design of Monet:

e binary relation model. Monet vertically parti-
tions all multi-attribute relationships in Binary
Association Tables (BATs, see Figure 1), consist-
ing of [0ID,attribute] pairs.

This Decomposed Storage Model (DSM) [4] fa-
cilitates table evolution, since the attributes of
a relation are not stored in one fixed-width re-
lation. In a GIS setting, this means that Monet
can easily choose to start maintaining precom-
puted functions on a table with geometric data,
by creating a new — separate — BAT with this
information.

The price paid for DSM is small: the slightly
bigger storage requirements are compensated
by Monet’s flexible memory management using
heaps. The extra cost for re-assembling multi-
attribute tuples before they are returned to an
application, is negligible in a main-memory set-
ting, and is clearly outweighed by saving on I/O

*In recent years this disparity has been growing with
40% each year

for queries that do not use all the relation’s at-
tributes.

Finally, maintaining all attributes in a different
table enables Monet to cluster each attribute dif-
ferently, and to precisely advice the operating
system on resource management issues, for each
attribute according to its access path character-
istics.

"Polys" Relation

TID|l anduse | geometry area
101 |farni and 988. 0
147 |urban _B 64.9
169 |forest | 875.3
324 |urban L 32.8
333 |l ake Py 42.2

DSM decomposition
into Binary Association /polys |anduse Polys_geometry Polys_area

Tables (BATSs) TID landuse] TID geometry TID area
101 [farmlan 101 [T | 101]9880
147 | urban 147 | 5B 147/ 649
169 | forest 160 | | 160| 8753
324/ urben 34| @ 324| 3238
33| lake 3B|Im 333 422

BAT memory layout

TID polygon
BUN Heap

ash Heap jous
idx nex| i
e ahy unit
- T
a7 1 UN)
il [169 Polygon Heap
nil l/—» 324
|

AN P
\; v “b,.gz

Figure 1: An example of Monet’s decomposed storage
scheme, in a GIS-extended application

Figure 1 shows how relations are stored in BATs.
The left column is referred to as head, the right
column as tail. A BAT has at least 1 and at
most 5 associated heaps, which form the basic
memory structure of Monet. There is always a
heap that contains the (fixed-size) atomic value
pairs, called Binary UNits (BUNs). For atoms
of variable size — such as string or polygon —
both head and tail can have an associated heap
(the BUNSs then contain integer byte-indices into
that heap). Finally, persistent search accelera-
tors — for instance hash tables — may be stored
in separate heaps, for both head and tail.

e perform all operations in main memory. Monet
makes aggressive use of main memory by assum-
ing that the database hot-set fits into main mem-

ory. All its primitive database operations work
on this assumption, no hybrid algorithms are
used. For large databases, Monet relies on vir-
tual memory by mapping large files into it. In
this way, Monet avoids introducing code to ’im-
prove’ or 'replace’ the operating system facilities
for memory /buffer management. Instead, it gives
advice to the lower level OS-primitives on the in-
tended behavior® and lets the MMU do the job
in hardware.

Unlike other recent systems that use virtual
memory [11, 21], Monet stores its tables in the
same form on disk as in memory (no pointer swiz-
zling), making the memory-mapping technique
completely transparent to its main-memory al-
gorithms.

Furthermore, Monet lets you specify a memory
management strategy for each individual heap.
Large heaps tend to be memory-mapped, while
smaller heaps can be loaded in memory for speed.
As for buffering strategies, BATs with a generally
sequential access pattern can profit from DMA
page prefetching, whereas this can be disabled
for randomly accessed heaps.

o extensible algebra. Ashas been shown in the Gral
system [10], many-sorted algebras have many ad-
vantages in database extensibility. Their open
nature allows for easy addition of new atomic
types, functions on (sets of) those types. Also,
an SQL query calculus-to-algebra transformation
provides a systematic framework where query
optimization and parallelization of even user-
extended primitives becomes manageable. Mon-
et’s Interface Language (MIL) interpreted lan-
guage with a C-like syntax, where sets are ma-
nipulated using a BAT-algebra.

The MIL has a sister language called MEL
(Monet Extension Language), which allows you
to specify extension modules. These modules can
contain specifications of new atomic types, new
instance- or set-primitives and new search accel-
erators. Implementations have to be supplied in
C/C++ compliant object code.

e coarse grained shared-memory parallelism. Par-
allelism is incorporated using parallel blocks and
parallel cursors (called ”iterators”) in the MIL.
Unlike mainstream parallel database servers, like

5This functionality is achieved with the mmap(),
madvise (),and mlock() Unix system calls.

PRISMA [1] and Volcano [9], Monet does not use
tuple- or segment-pipelining. Instead, the alge-
braic operators are the units for parallel execu-
tion. Their result is completely materialized be-
fore being used in the next phase of the query
plan. This approach benefits throughput at a
slight expense of response time and memory re-
sources.

A version of Monet designed to exploit efficiently
distributed shared-nothing architectures is de-
scribed in [20]. A prototype runs on IBM/SP1.

SQL frontend @
\
Data Mining Application
/- GIS Application (C++)\

S data- }
moduel [PPMY mine| stelib | SQL ODMG TkiTcl
modulelmodule|module] module| L
Monet Queue

runtime system | (hush)
|
M onet Queue D|(MI
-<-/7-< [job] %% L %% -<=/7T)-Job
Goblin Database Kernel__ Goblin Database Kernel

o oo

I e

o—

@ fransactions

Monet Server GlSclient

Figure 2: Monet Server and its Clients

Monet’s design overview is shown in Figure 2. The
low-level table-handling code supplying BATS, persis-
tency and concurrency is called GDK*. The top lay-
ers consist of the Monet request-queue, from which
multiple interpreter threads can take jobs for execu-
tion. Some of the actual MIL primitives are kernel-
primitives, though most of them are placed in exten-
sion modules, that can be dynamically loaded, config-
uring Monet to ODMG, Data Mining or GIS function-
ality.

The algebraic MIL interface has been wrapped in an
IDL specification, which also allows flexible interoper-
ability using the CORBA mechanism, and encapsu-
lates operations executed remotely or locally. Clients
can either be normal applications doing function-
shipping, or peer-to-peer Monet systems. These typ-
ically are applications, which come with simplified
server-layer, allowing them to cache and manipulate
Monet tables locally (for data-shipping situations).

2.1 Algebraic Interface

Monet has a textual interface that accepts a set-
oriented programming language called MIL (Monet

“the Goblin Database Kernel: a predecessor system.

Interface Language). MIL provides basic set oper-
ations (BAT-algebra) and a collection of orthogonal
control structures, including mechanisms to execute
tasks in parallel. The MIL interface is especially apt
as target language for high-level language interpreters
(SQL or OQL), allowing for rule-based algebra trans-
lation [10], in which parallel task generation is easy.
Algorithms that translate relational calculus queries
to BAT algebras can be found in [13, 20]

We show in an example what the MIL looks like.
Consider the following object relational SQL query on
the relation supply [comp#, part#, price]:

SELECT company.name,
company.telephone,
supply.quantity

FROM company, supply

WHERE supply.comp# = company.comp# AND
supply.part# = part_no AND
supply.price < 0.50

In Monet’s SQL frontend, the relational database
scheme will be vertically decomposed into five tables
named comp name, comp_telephone, supply_comp,
supply_part and supply_price, where in each table
the head contains an OID, and the tail contains the
attribute value. The SQL query gets translated to the
following MIL block:

VAR m_supply, m_comp;
VAR m_name, m_telephone, m_quantity;

SEMIJOIN(supply_part.SELECT(part_no),
supply_price.SELECT(0.0, 0.50));

m_supply := MARK(m_supply);

m_comp := JOIN(m_supply, supply_comp);

L
m_name
m_telephone
m_quantity

]

PRINT(m_name, m

m_supply :

JOIN(m_comp, comp_name);
JOIN(m_comp, comp_telephone);
JOIN(m_supply, supply_quantity);

telephone, m_quantity);

The variables created in the query cease to exist
with the end of the sequential block ({}) in which they
were created. The three last joins are placed in a par-

allel block ([])-

In all, the original double-select, single-join, three-
wide projection SQL query is transformed in a se-
quence of 8 BAT algebra commands. The dot notation
“a.oper(b)” is equivalent to function call notation
“oper (a,b)”. We describe in short the semantics of
the BAT commands used:

BAT command result

<AB>.mark {o;alab €
AB A unique_OID(0;)}

{ablab € AB,3cd € CD Aa =c}
{ad|ab € ABAcd € CDAb=c}
{ablab € ABAb > TIAb < Th}
<AB>.select(T) {ablab € ABAb =TI}

<AB>.find(T) {a|aT € AB}

<AB>.semijoin(CB)
<AB>.join(CD)
<AB>.select(TL,Th)

Note that JOIN projects out the join columns. The
MARK operation introduces a column of unique new
OIDs for a certain BAT. It is used in the example
query to create the new — temporary — result relation.

3 Customizable Databases

When a database is used for more than administra-
tive applications alone, the need for additional func-
tionality quickly arises [17]. First of all, new appli-
cation domains typically require — complex — user-
defined data-types, such as for instance polygon or
point. Secondly, one often needs to define new pred-
icates and functions on them (intersect(p;, p2) or
surface(p), for example). Also, new application do-
mains often create a need for new relational operators,
such as spatial join or polygon overlay. In order to
evaluate queries using the new predicates, functions
and relational operators, one needs new search accel-
erators (such as for instance R-Trees). Finally, appli-
cations using a database as backend want the option
to perform certain application-specific operations near
to the data. If a database server allows one to link ad-
ditional server code on top of it, the communication
penalties of creating a separate server process, encap-
sulating the database (a “client-level” server), can be
avoided.

3.1 Other Systems

Postgres [19] and GeoSabrina [7] are typical exam-
ples of an extended relational systems, allowing for
the introduction of new data types and access meth-
ods via prefixed ADT interfaces. This works fine for
new datatypes, predicates on them, and their accel-
erators, but does not allow for addition of new rela-
tional operators. In recent years, database researchers
have spent much effort on Object-Oriented databases.
In these systems, the programmer has more control,
but to the point that data independence is compro-
mised and the system gets hard to debug [8]. An-
other effort to achieve customizability has been the
“extensible-toolkit” approach, where a database can
be assembled by putting together a set of “easily” cus-
tomizable modules (see [6]). Putting together such a

system remains a serious work, however. One of the
most appealing approaches to the problem we find in
the Gral system [10], which accepts a many-sorted al-
gebra. Such an algebra can by its nature easily be
extended with new operations.

3.2 Extensibility in Monet

Monet’s extension system most resembles Gral,
supporting new data types, new search accelerators,
and user-defined primitives (embodying both new
predicates and new relational operators).

Monet extensions are packaged in modules, that
can be specified in the Monet Extension Language
(MEL). It requires you to specify ADT interfaces for
new atomic types and accelerators, together with map-
pings to implementation functions in C compliant ob-
ject code for all ADT operations and user-defined
primitives.

Both module-specification and implementation
object-code are fed into the Minstall utility (one
of several special-purpose utilities coming with the
Monet server), that parses the specification, generates
additional code, updates Monet’s module tables, and
stores the object files in the system directories.

3.2.1 Atomic Types

The ADT interface for atomic types assures that GD-
K’s built-in accelerators will work on user-defined
types. For instance, one of the standard ADT opera-
tions is AtomHash (), which ensures that GDK’s hash-
based join works on BATs of any type. The ADT
interface also contains routines to copy values to and
from a heap, and to convert them to and from their
string representations (for user interaction). Below we
show how an atom can be specified, and which ADT
operations should be defined:

ATOM <name> (<fixed-size> , <byte-alignment>)

FromStr := <fcn>; # parse string to atom

ToStr = <fcn>; # convert an atom to string

Compare = <fcn>; # compare two atoms

Hash = <fcn>; # compute hash value

Length = <fcn>; # compute length of an atom

Null = <fcn>; # create a null atom

Put = <fcn>; # put atom in a BAT

Get = <fcn>; # get atom from a BAT

Delete = <fcn>; # delete atom from a BAT

Heap = <fcn>; # generate a new atom heap
END <name>;

In case of a fixed-sized atom, the Put, Get and
Delete operations, perform the trivial task of updat-
ing some BUNs in the BAT. In case of a variable-sized
atomic type, they have the additional task of updating
the heap.

3.2.2 Search Accelerators

GDK provides passive support for user-defined search
accelerators via an ADT interface that maintains user-
defined accelerators under update and I/O operations.
The support is “passive” since basic GDK operations
only use the built-in accelerators for their own accel-
eration. An ADT interface always incurs some imple-
mentation overhead, and bearing in mind that accel-
erators in Monet have to retain their efficiency under
main-memory conditions, the canonical access path
trio open(), findnext() and close() [19] was left
out®. The ADT interface merely serves to ensure that
an accelerator remains up-to-date under GDK opera-

tions.
ACCELERATOR <name>
Build := <fcn>; # build accelerator on a BAT
Destroy := <fcn>; # destroy accelerator
Insert = <fcn>; # adapt acc. under BUN insert
Delete := <fcn>; # adapt acc. under BUN delete
Commit := <fcn>; # adapt acc. for transaction commit
Rollback:= <fcn>; # adapt acc. for transaction abort
Cluster := <fcn>; # cluster a BAT on accelerator order
END <name>;

As mentioned earlier, each accelerator resides in an
individual heap, and hence can be be made persistent
on disk, mapped into virtual memory and assigned a
buffering strategy.

3.2.3 New Primitives

The MIL grammar has a fixed structure but depends
on purely table-driven parsing. This allows for the
run-time addition of new commands, operators, and
iterators. Moreover, every user has an individual
keyword-table, such that different users can speak dif-
ferent “dialects” of MIL at the same time. All system
tables have been implemented as BATs and are acces-
sible to the user via persistent variables for debugging
purposes.

In order to do type-checking at the highest pos-
sible level, the MIL has been equipped with a poly-
morphism mechanism. A certain command, operation
or iterator can have multiple definitions, with differ-
ing function signatures. Upon invocation, the Monet
Interpreter decides which implementation has to be
called, based on the types of the actual parameters.

COMMAND <name> (<type-list>) : <type> := <fcn>;
ITERATOR <name> (<type-list>) 1= <fcn>;
OPERATOR <name> (<type>) 1 <type> := <fcn>;
OPERATOR (<type>) <name> (<type>) : <type> := <fcn>;

The above shows the MEL syntax for specifying
new primitives.

Sextension code that 'knows” the accelerator, typically
accesses it with a C-macro or C++ inline function.

4 GIS processing in Monet

Using the Monet database kernel to support the
GIS applications foreseen poses the following chal-
lenges on its design and implementation:

¢ putting optimization and extensibility together.

e efficiently dealing with huge data, while keeping
overhead on small data low.

On the first point, our approach is to use Monet
as a flexible GIS backend. Though this paper does
not seek to investigate geographical query optimiza-
tion, the BAT-operators for specifying memory man-
agement physical clusterings, and caching strategies
(see Section 4.2) show that Monet provides many op-
portunities for doing so — using algebraic transforma-
tion techniques. In such an algebraic translation, the
vertical decomposition using DSM also saves I/O, and
provide a means for inter-operation parallelism [20].

4.1 Managing GIS data in main memory

Regarding the huge datavolumes, Monet’s main-
memory oriented approach may at first sight seem
unsound. The below table shows the sizes and car-
dinalities of the Sequoia benchmark (as specified in
[18]), and occupied space in datastructures of Monet.

On a workstation with 128 MB of main memory,
Monet performs well until the database hot-set reaches
60 MB. Beyond that, the system will start swapping,
until the BATs operated upon even exceed swappable
memory.

Point
specification | monet | cardinality
2Mb 2.4Mb 60K Regional
28Mb 13Mb 900K National
300Mb 10M World
Polygon
specification | monet | cardinality
20Mb 39Mb 60K Regional
300Mb 407Mb 900K National
3Gb 10M ‘World
Graph
specification | monet | cardinality
50Mb - 300K Regional
1Gb - 6.5M National
10Gb 65M ‘World
Raster
specification | monet | cardinality
1Gb 900Mb 500M Regional
17Gb 15Gb 9G National
2Tb 1T ‘World

SEQUOIA Benchmark Sizes

Still, one should bear in mind that GIS algorithms
typically employ filtering steps, in which much smaller
relations are used, before using the voluminous poly-
gon or graph data [3].

Filtering algorithms in GIS use approximations, for
example, minimum bounding rectangles (MBRs), for
handling of polygon or graph data. Since a BUN con-
sisting of a <0ID, MBR> is 20 bytes long, we see that
regional benchmark relations approximating the poly-
gon and graph data would have sizes 1.2 Mb and 6
Mb, respectively, which can easily be handled in main
memory. Even for the national benchmark these sizes
are 18 Mb and 130 Mb, which — possibly with the help
of some fragmentation — can also be made to work in
a large main memory.

The above reasoning shows that the approximation
steps on relatively large GIS data often can be per-
formed in main memory. However, after the filtering
steps, such algorithms still need to access the big ta-
bles, in order to perform the final steps on the filtered
objects. It is clear that these tables cannot economi-
cally be held in main memory. Therefore we use vir-
tual memory primitives, supplied by modern operating
system architectures.

4.1.1 Memory Mapped Files

In recent years, there has been an evolution of oper-
ating system functionality towards micro-kernels, i.e.
those that make part of the OS functionality accessi-
ble to customized applications. Prominent prototypes
are Mach, Chorus, and Amoeba, but also conventional
systems like Silicon Graphics’ IRIX and Sun’s Solaris®
provide hooks for better memory and process manage-
ment.

Stonebraker discarded the possibility of using
memory-mapped files in databases [16], on the
grounds that operating systems did not give sufficient
control over the buffer management strategy, and the
fact that virtual management schemes waste mem-
ory. Now — a decade later — we think the picture
has changed. Operating systems like Solaris and IRIX
do provide hooks to give memory management advice
(madvise), lock pages in memory (mlock”), invalidate
and share pages of virtual memory. This is why re-
cently interest of the database community in these
techniques has revived [11].

Monet uses the virtual memory management sys-
tem call mmap () to map big heaps into its main mem-

8These are the two platforms on which Monet is cur-
rently supported.
"One has to have Unix root permission for this.

ory. The database table is mapped into the vir-
tual memory as a range of virtual memory addresses.
When addresses are accessed, page faults occur, and
the pages are loaded when needed.

The only upper limit to the size of the tables is
the virtual address space. Monet currently runs on
Sun and SGI machines that have a 32-bit address-
ing scheme. This leads to an address space of 4 Gb,
which for the present is enough. Future CPUs will be
equipped with 64-bits addressing, like DEC’s Alpha
already is.

4.2 Memory Management in Monet

The memory-mapping implementation technique
has a number of advantages:

e it provides flexibility. Orthogonally of what
is stored in a Monet heap, one can decide to
memory-map it, or not. Additionally, for each
heap one can specify a different buffering strat-
egy, which can be one of:

— prefetch. After a page-fault, get one disk
cluster (64K of pages), and start an async
readahead through DMA for the next clus-

ter.

— random. Just get the pages faulted on — no
prefetching.

— sequential. Similar to prefetch, but the
touched pages are immediately marked for
swapout.

o the scheme is completely transparent in Monet®.
This allows for a seamless transition from main-
memory processing to disk-based processing.

e it is efficient in loading database tables, since
only the pages needed are loaded. Under page-
swapping conditions it holds out better than nor-
mal memory, because the file will swap on itself,
and is not copied to swap space. Also, when sav-
ing a memory-mapped file, the MMU hardware
guarantees that only dirty pages are written.

4.2.1 Clustering on Memory Pages

In effect, memory-mapped files bring Monet’s ap-
proach back to the traditional, disk-based algorithms
— but only where this is really necessary. This means,

8recall that Monet’s datastructures take the same form
on disk as in main memory

that in disk-dominated database configurations tradi-
tional methods such as clustering on a search accel-
erator order may be beneficial. Where in other sys-
tems this saves I/O, clustering will save page-faults in
Monet. In Monet clustering is done by storing objects
that are likely to be referenced at the time close to
each other in memory — not necessarily, but probably,
on the same disk-page. Remark that clustering can
be performed orthogonally as an optional sorting op-
eration (see Figure 3). It is transparent to Monet’s
main-memory algorithms, but will have an accelerat-
ing effect.

BAT BAT
0 | H A ‘D 3 | D
1| F K 6 | E
| 1 | F | = | 6 | E |
2 | K Fl ‘ 1 | F
3 | D | 8 | G
4 [E L o [H
5 | L 4 |1
6 | E B = [m] c 9 | J
7 1™ H 2 |K
8 | G [c] 5 | L
o | R-TREE v M
[ale]c]]
[ole[r[| [e[n[iT] [oI]LIm]

\\9 CLUSTER(BAT) : BAT —J

Figure 3: Clustering BATs in Memory Pages

All three different types of heaps in a BAT can be
clustered independently:

o clustering BUN-heaps. The BUNs in a BAT can
be clustered for optimal access via one of its asso-
ciated accelerators. The result of the clustering
depends on the accelerator-type. If, for instance,
an R-Tree accelerator is used as access path, the
resulting BUN-heap gets clustered spatially. In
this case adjacent rectangles are likely to be on
the same memory page. A hash-clustering en-
sures that items with the same hash value will
be put together; this can significantly speed up
equijoin operations.

e clustering wariable-sized atom heaps. The
variable-sized atoms of a BAT (which are stored
in separate heap) can be clustered in the same
order as the BUNs themselves. In some cases,
however, it is better to cluster the BUN-heap and
atom-heap differently, as we will see in the exam-
ple of Section 4.2.2.

o clustering search accelerator heaps. Disk-page
oriented systems use RT trees, putting effort in

optimizing disk page occupancy, while minimiz-
ing tree-depth [15]. Monet is intended to be used
in both disk-oriented as well as main-memory sit-
uations (in which simple algorithms tend to work
best [14]). We solved this conflict by building
a main-memory oriented R-Tree structure (with
small nodes). For disk-dominated configurations
we offer a clustering operation, that reorders a
R-Tree, such that every memory page contains
one subtree, which all together form the entire
tree, where each dashed box contains about one
disk-page of nodes (see Figure 4).

Figure 4: Clustering R-Tree nodes on memory pages

4.2.2 Performance Effects of Clustering

To give some idea of the impact of clustering on perfor-
mance we have done some experiments with Query 6
of the Sequoia Benchmark (see Section 5). This query
— which has a selectivity of about 1% — can be split
into two parts: the first part selects all [0ID,box]
pairs within the given rectangle using an R-Tree. The
boxes represent bounding boxes of polygons with the
same OID. This query benefits from clustering of both
the nodes in the R-Tree (in the way described above),
and from clustering the [0ID,box] BUNs on spatial
proximity (R-Tree traversal order). The following ta-
ble gives the results of this query with all possible
clustering options:

| time / #pageflt || nodecluster | no nodecluster |

0.234/30 0.775/89
0.388/39 0.843/97

batcluster

no batcluster

The second part of Query 6 semijoins the selected
OIDs with the [0ID,polygon] BUNSs, giving the re-
quested set of polygons. Since Monet’s semijoin is
hash-based, it pays to cluster this BUN-heap, which
contains only the OIDs — the polygons are in a sep-
arate variable-sized atom heap — on hash value. Be-
cause the OIDs were initially selected using the R-
Tree, the polygon-heap can best be clustered on spa-
tial proximity. This further reduced the number of

page-faults on the semijoin from 336 to 274. So, we
see here an example of a BAT, where the different
heaps it consists of have differing optimal clustering
orders.

4.2.3 Buffer Management Strategies

On memory-mapped files, Monet uses OS hooks to
give advice on OS paging cache strategies. We dis-
tinguish three ways of accessing a BAT — all of which
prosper by a different caching strategy.

e If no index exists on a BAT, a sequential scan
is the only way of accessing a BAT, the OS can
be told that to prefetch pages® using DMA, and
mark them for release immediately after.

e If a BAT is accessed via an index on which the
BAT is clustered, it is likely that pages near a
page accessed will be accessed in the near future.
By telling the OS to prefetch pages in DMA (but

not to release them!) speedup will be obtained.

e If a BAT is accessed via a non-clustered index,
the prefetching of adjacent pages is useless, be-
cause the memory pages are accessed in random
order. By telling the OS to expect random access,
time wasted by prefetching unnecessary pages is
saved.

4.2.4 Performance Effects of different Cache
Strategies

We ran Query 7 of the National Sequoia Benchmark
(see Section 5) with different caching strategies, with
the polygons clustered on R-Tree, or not:

| Query 7 || cluster | nocluster |

random 2.29 2.35
prefetch 1.89 3.18

The above shows that in the nonclustered case,
DMA prefetching is slower than random access
(presumably because mostly unnecessary pages get
fetched). In the clustered case, however, prefetch gives
the best result, since spatially near polygons are stored
in nearby memory pages.

Our results on clustering and buffer managament
prove that current OS primitives are capable of sup-
porting a database kernel built on main-memory
datastructures and algorithms in a disk-bound setting
(processing large datavolumes in virtual memory).

9this is cheaper than generating page-faults one-at-a-
time

5 Monet Implementation of the Re-
gional and National Sequoia 2000
Benchmarks

To demonstrate the feasibility and effectiveness of
our approach, we decided to run both the Regional
and National Sequoia 2000 Storage Benchmarks [18].
Results on the Regional benchmark have been pub-
lished for both research and commercial GIS database
servers [5]. Our implementation of the National
benchmark sets a new mile-stone for further develop-
ments in this area.

The implementation of the Monet GIS datatypes
makes extensive use of MEL modules. Several mod-
ules were implemented to provide for the necessary
primitives and search accelerators. The Sequoia Re-
gional Dataset was obtained, and a National Dataset
was created from it. Then, the Sequoia queries were
translated to Monet’s MIL interface and run. The
modules and the experimentations are described be-
low.

5.1 Extension Modules

To support the Sequoia Dataset, we have imple-
mented Point, Box and Polygon atomic types. The
former two comnsist of fixed-size records of integers.
The polygon type is a variable-sized type: BAT’s
containing polygons will store them in an associ-
ated heap. We provided ADT operations for these
atoms, as well as predicates on them (such as bool :
Point_In Box(p,b)).

To optimize access on queries involving spatial
proximity, we chose to implement R-Trees [15]. Since
Monet accelerators must perform well in both main-
memory as disk-based settings, we chose the most sim-
ple, lightweight approach, complemented by cluster-
ing operations to optimize on page-faults. Algebra-
operations like RTREEselect () where added that use
these R-Trees to optimize, in this case, an overlap-
select. Similarly, Quad-Trees [15] were implemented,
for fast access to points.

Rasters were implemented as unary tables: these
are BATs which have the void type any in one of the
columns. We interpret such an unary as a 2-D mesh of
tiles. The tiles are adjusted — depending on the atom-
size — to occupy one diskpage, and from left to right,
row by row. This raster functionality was created by
defining new commands, operating on unary BATSs,

that in effect perform raster-loads and -clippings.
All extensions were packaged in a set of MEL mod-
ules, from which an excerpt is shown below:

MODULE Box;

ATOM Box(16,4);

TOSTR = BOXtoStr;
FROMSTR = BOXfromStr;
COMP = BOXcomp;
DEL = BOXdel;
HASH = BOXhash;
NULL = BOXnull;
PUT = BOXput;
GET = BOXget;
LENGTH = BOXlength;
HEAP = BOXheap;
END;

END Box;

MODULE RTree;

USE Box;

ACCELERATOR RTree (Box);
BUILD = RTREEmake;
DESTROY = RTREEdestroy;
INSERT = RTREEinsert;
SAVE = RTREEsave;

END;

OPERATOR (bat[any,ibox]) Join (bat[ibox,any])
: bat(any,any) = RTREEjoin;
COMMAND RTreeSelect(bat[any,ibox], ibox)
: bat(any,ibox) = RTREEselect;
COMMAND RTreeCluster(bat[ibox,any])
= RTREElogiccluster;
COMMAND RTreeClusterNodes(bat[ibox,any])
= RTREEfysiccluster;
END RTree;

5.2 Test Configuration

The Regional sequoia Dataset consists of point-,
polygon-, directed graph- and raster-data about the
State of California. We generated a National bench-
mark out of this data, by creating a grid of 5x3 States
of California. We also expanded the queries with a fac-
tor 15, that is, our National Benchmark queries select
on regions that are 15 times as big as the Regional
selections, etc.!?

Our benchmark platform was a Sparc 20, at 60
Mhz, 1MB secondary cache, with 128 MB of main
memory. It has a Seagate ST15150W disk with 5Gb
capacity, a throughput of 20Mbyte/s throughput and
0.85 msec access time. The client was a Sun IPX, con-
nected to the server by 10Mbit/s ethernet. In this ar-
ticle, we compare our numbers with results published
on Postgres, Illustra and Paradise [5]. The configura-
tion described there has a CPU about twice slower, a
disk with roughly twice less throughput, and 1.0 msec
access time. For this reason, we hardware corrected
their numbers for comparison purposes with a factor

%detailed information about the Sequoia Dataset
scripts, the queries, and results can be found on
http://wuw.cwi.nl/projects/monet/sequoia/.

0.6. This factor was taken by assuming that Sequoia
performance is 50% I/O and 50% CPU bound, giving
equal weight to differences in random access time and
throughput. Of course, this is only a rough compar-
ison: in random-access queries, we expect Monet to
perform relatively better, whereas CPU bound results
may be a bit inflated.!!

5.3 Query Results and Analysis

The below tables display all Sequoia results:

Query 1: Database load

Monet Monet Paradise | Illustra | Postgres
National | Regional | Regional | Regional | Regional
total 37190 712 2204 3506 5299
raster 34580 590
point 656 14.5
poly 1954 107
Monet Monet Para- || Illus- || Post-
National Regional dise tra gres

Query 2: Select a raster for a given wavelength and rect-
angle, ordered by ascending time.
cold | warm | hot cold | warm | hot cold cold cold
45.5 3.7] 3.0 | 14 8.0 8.9 8.2
Query 3: Select a raster for a given time and rectangle,
and calculate an average on the wavelengths for each cell.

cold | warm | hot cold | warm | hot cold cold cold

14.2 0.87| 0.75 [0.38 || 1.20 || 2.88 || 3.44
Query 4: Select a raster for a given time, wavelength band
and rectangle. Lower the resolution of the image by a fac-
tor 64 and store it in the DBMS.

cold | warm | hot cold | warm | hot cold cold cold

24 | 1.6 | 1.2 [|0.24| 0.18 | 0.09| 0.36 || 1.44 || 0.78

Query 5: Find all points with a given name.

cold | warm | hot cold | warm | hot cold cold cold

0.10 | 0.08 | 0.00 || 0.09 | 0.08 | 0.00 || 0.12 || 0.60 || 0.54

Query 6: Find all polygons intersecting a rectangle.

cold | warm | hot cold | warm | hot cold cold cold

58 | 53 |16 (| 21| 1.1 | 0.2 4.3 12,5 || 22.0
Query 7: Find all polygons larger than a certain size, and
within a specific circle.
cold | warm | hot cold | warm | hot cold cold cold
1.90 | 0.90 | 0.06 || 0.51| 0.39 | 0.01| 0.42 || 0.49 || 21.3
Query 8: Show the landuse/landcover in a 50km quadran-
gle surrounding a given point.
cold | warm | hot cold | warm | hot cold cold cold
50| 29 (02| 16| 0.7 | 0.3 5.7 14.5 || 37.9
Query 9: Find the raster data for a given landuse type in
a study rectangle for a given wavelength band and time.

cold | warm | hot cold | warm | hot cold cold cold
14.7(0.7 | 04 || 1.4 | 0.2 | 0.0 1.7 0.7 1.7
Query 10: Find the names of all points of a specific vege-
tation type and create this a a new DBMS object.

cold | warm | hot cold | warm | hot cold cold cold

4.7 1.4 - 0.4 || 196.2

"nterestingly, our larger memory (128MB vs 32MB)
was no factor of influence, due to the simple selection-
character of the Sequoia queries. The biggest memory user
was Regional Query 6 with 3.0 MB of loaded memory plus
1.2 MB in memory mapped pages. Only database import
takes more memory: point query 1 takes 26 MB.

The measured times, presented throughout this ar-
ticle are in seconds of elapsed time.!® The table
presents three times for both the National and Re-
gional measurements:

e cold: the tables involved in the query have not
been accessed since server startup.

e warm: the tables involved in the query have been
accessed, but for a query that involved differ-
ent data instances. This time captures typical
database browsing access.

e hot: the same query was run as just before. This
number characterizes execution time in a purely
main-memory situation.

All Sequoia relations were vertically partitioned
into separate <relation>_<attribute> BATSs hav-
ing OIDs in the head-columns, and a Sequoia attribute
in the tail column.

The OID head-columns of all BATs had a hash-
index built on them. The BUN-heaps of all BATs
were clustered on these hash-tables, except for the
Points_location BAT, which was clustered on the
Quad-Tree indexing the points.

During polygon creation, we computed bound-
ing box approximations for all polygons. On this
Polys_bboxes BAT, an R-Tree was built, with which
the polygon-heap of the Polys_geometry was clus-
tered.

Monet’s default buffering strategy on memory-
mapped heaps is random. Since GIS data is large,
we chose to memory-map all heaps of all BATs for
both the Regional and the National Benchmark. The
prefetch strategy was applied only to take advantage of
clustering: on the tree-indices, and the polygon-heap
(which was clustered on R-tree).

Query 2 requires the result to be exported back
to the client. This was done by writing the resulting
rasters to a disk on the client with NFS.

Most time in Query 1 (database load) is spent on pars-
ing the ASCII files, making this query CPU bound.
The high performance is achieved mainly by DSM,
making the construction of index structures cheap,
since the tuples involved are small. We should add,
though, that the fast results are a bit offset by the
fact that our topological datastructures were not yet
finished, so we did not have to import graph data (and
consequently we did not perform Query 11 either — but
neither did the other systems).

The fast performance on raster queries show the
benefit of a low overhead system. Raster data for

each time and wavelength band was stored in a sep-
arate — equally sized — raster, amounting to a total
of 130 unary BATs. Since we did not have sufficient
disk space to generate all 130 rasters for the National
benchmark, the national raster queries accessed a sub-
set of them multiply, calling a memory-flush utility
between accessing them during query execution.®

As for the polygon- and point-queries, our results
show that simple main-memory algorithms, enhanced
by clustering and specific cache strategies on individ-
ual heaps, give good performance, even on very large
datasets. More data than described here was obtained,
but is omitted here because of space limitations.°

Note that we did not use Monet as a main-memory
system here: no data was preloaded whatsoever.
Our “cold” times therefore present the worst-case be-
haviour; when Monet’s performance becomes disk-
bound. This made a fair comparison with other sys-
tems possible. If we had used the potential of our 128
MB (e.g. by preloading all search accelerator heaps),
thus blending main-memory with disk-bound process-
ing, “cold” times would improve dramatically towards
the “hot” numbers.

As a final point, we think that the Sequoia bench-
mark has limitations in both the simplicity of the
queries — providing no need for complex optimiza-
tion — and lack of serious thematic data, that would
make relations even wider. A more complex bench-
mark would favor our algebraic approach, and wider
relations would let Monet save even more I/O using
its Decomposed Storage Model.

o
mebatloop() {

seni join(polys_landuse_s.select ($1)) .
shou(bb. colors.Find($1))

Figure 5: Provisional GEO-Monet Interface

6 Future Work

In the short term, our current provisional inter-
face (Figure 5), just allows for drawing maps using
algebraic commands — and zooming in/out with the
mouse. It will be replaced soon by the GIS client de-

picted in Figure 2, that provides a better interface and
caches results for supporting browsing sessions.

Our future actions involve further development of
a full-fledged geometric and topological reasoning sys-
tem on top of the current framework. Extension with
CPU-intensive routines also requires further invest-
ments in parallel execution.

An OQL query optimizer and graphical user-
interface are under development by other members of
the MAGNUM project. This work takes place in the
context of our ODMG compliant persistent program-
ming system, that uses Monet and its — geographical
— extensions as a backend.

7 Conclusions

We describe Monet, a MMDBMS that employs
OS virtual-memory and buffer management primitives
when large data volumes exceed main-memory. Its
novel architecture presents a response to the trend
of increasing main-memory sizes in custom hardware,
that can be contrasted with the approach of just equip-
ping a conventional DBMS with a large cache. To test
the performance and extensibility of our system, we
wrote GIS modules and ran the Sequoia benchmarks.
Our implementation of the 15 GB National benchmark
sets a new mile-stone for future developments in this
area.

Monet’s use of virtual memory primitives to
avoid overhead typically induced by a DBMS tuple-
manager. Its flexible storage structures (Decomposed
Storage Model) and efficient (lightweight) algorithms,
make it a highly efficient main-memory system, as
shown by the “hot” Sequoia results. The “cold” exper-
iments present the proof of concept for the employed
OS techniques: Monet also obtains excellent results
when huge datavolumes degrade performance to disk-
bound processing.

By holding more and more data memory-resident,
performance gradually shifts from Monet’s “cold” to-
wards the “hot” performance, enabling you to blend
main-memory with disk-bound processing — a desir-
able property in times where many application do-
mains are moving around the brink of the two situa-
tions.

Acknowledgements

We thank the members of the database research
group of CWI and UvA for their continual support in
making Monet a viable DBMS. The challenges posed
by the MAGNUM project members have been a stim-
ulus to prove our case.

References

[1]

[6]

[9]

[10]

P. M. G. Apers, C. A. van den Berg, J. Flokstra,
P. W. P. J. Grefen, M. L. Kersten, and A. N.
Wilschut. PRISMA/DB: A parallel main mem-
ory relational DBMS. IEEFE Trans. on Knowledge
and Data Eng., 4(6):541, December 1992.

P. A. Boncz and M. L. Kersten. Monet: An im-
pressionist sketch of an advanced database sys-
tem. In Proc. IEEE BIWIT workshop, San Se-
bastian (Spain)., July 1995.

T. Brinkhoff, H. Kriegel, R. Schneider, and
B. Seeger. Multi-step processing of spatial joins.
In 23 ACM SIGMOD Conf. on the Management
of Data, pages 197-208, June 1994.

G. Copeland and S. Khoshafian. A decomposition
storage model. In Proc. ACM SIGMOD Conf.,
page 268, Austin, TX, May 1985.

David J. DeWitt, Navin Kabra, Jun Luo, Jig-
nesh M. Patel, and Jie-Bing Yu. Client-server
Paradise. In Proceedings of the 20th VLDB Con-

ference, Santiago, Chile., pages 558569, Septem-
ber 1994.

et al. Carey,M. and DeWitt,D. The EXODUS
extensible DBMS project: An overview. In In
’Readings in Object-Oriented Database Systems”
edited by S.Zdonik and D.Maier, Morgan Kauf-
man. 1990.

et al. G.Gardarin and M.Jean-Noél. Sabrina, a re-
lational database system developed in a research
environment. In Technology and Sciences of In-
formatics. AFCET-Gauthier Villard - John Wil-
ley and Sons Ltd., 1987.

et al. Neuhold,E. and Stonebraker,M. Future
directions in DBMS research. ACM SIGMOD
RECORD, 18(1), March 1989.

G. Graefe. Encapsulation of parallelism in the
volcano query processing system. In 19 ACM
SIGMOD Conf. on the Management of Data, At-
lantic City, May 1990.

R. H. Guting. Gral: An extensible relational
database system for geometric applications”. In
Proceedings of the 15th VLDB Conference, Ams-
terdam, August 1989.

[11]

[12]

[13]

[18]

[19]

[21]

D. Lieuwen H. V. Jagadish, R. Rastogi, A. Sil-
berschatz, and S. Sudarshan. Dali: A high per-
formance main memory storage manager. In Pro-
ceedings of the 20th VLDB Conference, Santiago,
Chile., pages 48—59, September 1994.

M. Holsheimer, M. L. Kersten, and A. Siebes.
Data Surveyor: searching for nuggets in parallel.
In Knowledge Discovery in Databases. MIT Press,
Cambridge, MA, USA, 1995.

S. Khoshafian, G. Copeland, T. Jagodits, H. Bo-
ral, and P. Valduriez. A query processing strat-
egy for the decomposed storage model. In Proc.
IEEE CS Intl. Conf. No. 3 on Data Engineering,
Los Angeles, February 1987.

T. J. Lehman and M. J. Carey. A study of index
structures for main memory database manage-
ment systems. In Proceedings of the 12th VLDB
Conference, Kyoto, August 1986.

H. Samet. The Design and Analysis of Spatial
Data Structures. Addison Wesley, 1990.

M. Stonebraker. Operating system support for
database management. Communications of the

ACM, 14(7), July 1981.

M. Stonebraker. Inclusion of new types in rela-
tional database systems. In Proc. IEEE CS Intl.
Conf. No. 2 on Data Engineering, Los Angeles,
February 1986.

M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. The Sequoia 2000 storage bench-
mark. In 19 ACM SIGMOD Conf. on the Man-
agement of Data, Washington,DC, May 1993.

M. Stonebraker and G. Kemnitz. The POST-
GRES next-generation database management
system. Comm. of the ACM, Special Section on
Nezt-Generation Database Systems, 34(10):78,
October 1991.

C. A. van den Berg and M. L. Kersten. An
analysis of a dynamic query optimisation scheme
for different data distributions. In J. Frey-
tag, D. Maier, and G.Vossen, editors, Advances
in Query Processing, pages 449-470. Morgan-
Kaufmann, San Mateo, CA, 1994.

Seth J. White and David J. DeWitt. Quick-
store: A high performance mapped object store.
In ACM SIGMOD Conf. on the Management of
Data, pages 395-406, May 1994.

